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between this and the other aspects of the subject that makes this book especially 
attractive. 
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The story of numerical analysis is mostly about translating mathematical con- 
cepts and models into a quantitative medium, fleshing numbers on the formal 
mathematical skeleton. This, however, should not obscure the crucial role of 
qualitative aspects of computation. It is an illusion that, as soon as it comes 
to application, all questions are of a purely quantitative character. 'Will the 
satellite stay in stable orbit?', 'Does a mixture undergo combustion?', 'Will the 
species survive in a given environment?', are all qualitative questions. Presum- 
ably, they are modelled by differential equations. Presumably, these differential 
equations are solved numerically. Certainly, their numerical solution contains 
errors. Naively, the purpose of numerical analysis is to minimize the accretion 
of error, but this frequently misses the point of the whole calculation. Thus, 
let us consider the stability of a satellite and suppose that two alternative com- 
putational methods are available. The first produces a very small error which, 
however, consistently undershoots the elevation. The second is considerably 
more error-prone but gets the stability issue exactly right: the numerical orbit 
is stable if and only if so is the exact one. Little doubt that, for the specific 
purpose in hand, the second method is superior! 

The emphasis on the recovery of qualitative attributes of a mathematical 
model, rather than just minimizing the error, is relatively a new one. It has 
led in the last decade to a profound new insight into computation and has 
changed the treatment of many important numerical problems. Arguably, the 
most significant advance has been associated with Hamiltonian problems. 

A system of ordinary differential equations is said to be Hamiltonian if it can 
be represented in the form 

dp OH(p, q) 
dt Oq 
dq OH(p, q) 
dt Op 

where H is a given C' function. A significant proportion of dynamical systems 
that occur in mechanics-classical and quantum alike-can be rendered in a 
Hamiltonian form. As Penrose comments, "Such unity of form in the structure 
of dynamical equations, despite all the revolutionary changes that have occurred 
in physical theories over the past century or so is truly remarkable!" [3]. 

The formulation of equations of motion by William Rowan Hamilton in 
the above form was highly significant for sound physical reasons. The letter 
p stands for positions and q for momenta of physical particles, whilst H is 
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the total energy. This dichotomy between position and momentum (and the 
consignment of velocity to an inferior role) was a crucial conceptual advance 
that augured the development of quantum mechanics. The practical significance 
of Hamiltonian systems, however, has less to do with their august historical role 
than with their intricate dynamics. 

To put it in a nutshell, the problem with Hamiltonian equations is that they 
possess too much structure. For starters, total energy is conserved, H(p(t), q(t)) 
-const. So is an infinity of other integral quantities. More importantly, the 
flow DH,t(P(O), q(O)) = (p(t), q(t)), which assigns the solution at fixed time t 
to an initial condition, has a symplectic property: if DH, t(Q) = Q, then the 
sum of the areas of the projections into all two-dimensional spaces (pj, qj) 
is the same for Q and Q. Moreover, as long as we restrict our attention to 
simply-connected sets Q, symplecticity characterizes Hamiltonian systems. 

Symplecticity is at the root of a whole range of interesting phenomena. Thus, 
it implies that fixed points of the flow are surrounded in the phase space by stable 
centres-the phase plane of the humble linear equation y" + y = 0 is a case in 
point. 

Experienced applied mathematicians know that often there is a price to be 
paid for conservation. In the familiar case of nonlinear hyperbolic conservation 
laws, the price of conservation is discontinuity. For Hamiltonian systems it is 
the sheer complexity of the flow: chaotic trajectories are a rule rather than an 
exception. The situation becomes even more complicated in the case of nu- 
merical modelling-after all, centres are known as the most volatile dynamical 
objects. Every tiny perturbation (and what is a numerical error if not a pertur- 
bation?!) is likely to turn a centre into a (stable or unstable) spiral. Inasmuch 
as the numerical error per se might be small (at least, for solution intervals of 
moderate length), the qualitative picture becomes misleading. 

Hamiltonian systems have been computed (often badly) for many decades, 
but only in the early Eighties had a serious effort been expanded to design algo- 
rithms that preserve symplecticity, thereby ensuring that the numerical solution 
is faithful to original differential equations. As often, both the impetus and 
early results originated in the work of mathematical physicists [1, 4]. They 
have employed algorithms based on generating functions which, their ingenuity 
notwithstanding, are labour-intensive and need be derived afresh-by a painful 
expansion into series-for virtually every new Hamiltonian. 

A turning point in the history of symplectic integrators came in 1988, when 
three numerical analysts (F. M. Lasagni, J. M. Sanz-Serna and Y. B. Suris [2, 
5, 7]) independently proved that, subject to a satisfaction of an algebraic con- 
dition, Runge-Kutta methods are symplectic. Specifically, if A = (ak, ) is the 
RK matrix and b = (bl) are the RK weights of an s-stage Runge-Kutta, the 
symplecticity condition is bkak,l + blal,k = bkbl, k, 1 = 1, 2, ... , s. Sim- 
ilar conditions can be derived for Runge-Kutta-Nystrom and for partitioned 
Runge-Kutta methods (the latter apply different schemes to p and q). In par- 
ticular, the familiar GauB-Legendre methods are symplectic. Even more re- 
markably, in the important special case of the Hamiltonian being of the form 
H(p, q) = IpTp + V(q), the underlying equations can be solved by an explicit 
Runge-Kutta-Nystrom method which is symplectic! 

This pioneering work has been followed by a large number of publications 
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and generated a great deal of interest, not only among numerical analysts but 
also in the nonlinear dynamical systems community. The present monograph 
of Jesus Maria Sanz-Serna and Mari Paz Calvo, both leaders in the symplectic 
field, is very timely indeed. It started its life as an Acta Numerica survey [6] 
and has been subsequently expanded to a book form. 

Writing a monograph for numerical analysts, symplectic geometers and users 
of Hamiltonian systems-astronomers, molecular biologists, mathematical phys- 
icists, quantum chemists, engineers, fluid dynamicists-presents a significant 
challenge, because of the great variability in numerical and mathematical profi- 
ciency of the target audience. Some will know good dynamics and no numerics, 
others good numerics and no dynamics. Yet others will know bad numerics and 
bad dynamics. A good monograph should dispel ignorance without putting to 
the test the attention span of the more knowledgeable readers. Sanz-Serna and 
Calvo managed this task in a most splendid manner! 

The first part of the book is devoted to an exposition of analytic aspects of 
Hamiltonian equations. The dosage of mathematical sophistication is just right 
to present main qualitative properties of Hamiltonian systems and highlight the 
importance of symplecticity, but the authors admirably resist the temptation 
to wade into the deep waters of symplectic geometry or the KAM theory-a 
detour which, although replete with beautiful mathematics, is not necessary to 
understand the subject matter of this monograph. 

Having explained dynamics to numericists, the authors devote the second 
part of the book toward the explanation of numerics (specifically, Runge-Kutta 
methods) to dynamicists. This is inclusive of both theory-in the main, applica- 
tion of rooted trees in the derivation of order conditions-and implementation. 

The first two parts of the book set the stage for its extensive survey of symplec- 
tic Runge-Kutta methods. The algebraic condition for symplecticity is derived 
for standard, partitioned and Nystrom methods. Moreover, there is a detailed 
consideration of the surprising, yet important, result of L. Abia and J. M. Sanz- 
Serna, namely that order conditions and the symplecticity condition interact! 
As soon as the algebraic condition for symplecticity is imposed on the RK ma- 
trix, most order conditions go away. This makes the derivation of symplectic 
Runge-Kutta methods substantially simpler. 

Available symplectic methods of all kinds-explicit, implicit, singly- 
diagonally implicit, composite-are surveyed in great detail. This is accom- 
panied by extensive numerical experiments that demonstrate vividly that sym- 
plectic methods easily outperform state-of-the-art (nonsymplectic) Runge-Kutta 
schemes. 

An important consequence of symplecticity is that the solution can be sub- 
jected to backward error analysis. It is possible to prove that a symplectic nu- 
merical trajectory samples (within a uniformly small error) the exact solution 
of nearly Hamiltonian equations. Therefore, global behaviour of the solution 
is captured correctly, since the numerical trajectory reflects the properties of 
this nearby Hamiltonian. However, symplecticity and all its benefits are lost as 
soon as the step size is being amended in the course of the numerical solution 
and governed by (local) error control considerations. This flies in the face of 
received numerical wisdom: always control the error, always use a variable-step 
algorithm. 

There is no such thing as a free numerical lunch. Symplecticity means that 
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the error cannot be controlled in the course of the solution: we must stick 
with an initial step length through thick and thin. Abandonment of symplectic- 
ity, on the other hand, spoils the qualitative picture, denies us the benefits of 
backward error analysis and in long-term integration brings about considerably 
faster accumulation of error. The authors debate this dilemma at some length 
and conclude that, provided the solution interval is relatively short, good (non- 
symplectic) Runge-Kutta methods, e.g., the Dormand-Prince algorithm, have 
the edge. However, there is little doubt that symplectic methods are superior 
when it comes to long-term integration. 

The authors conclude with a long list of additional themes and extensions- 
generating functions, the Lie formalism, the Poisson bracket, generation of high- 
order symplectic Runge-Kutta... 

This is an important book on an important subject. As numerical analysis 
evolves, we are likely to witness growing interdependence of numerical and 
dynamical considerations. Numerical Hamiltonian equations are a showcase of 
this meeting of ideas and cultures, but its eventual influence is bound to spread 
significantly wider. No numerical analyst can afford to stay ignorant of this 
trend. 
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In 1971 James Wilkinson and Christian Reinsch edited a handbook of AL- 
GOL programs for the solution of linear systems and eigenvalue problems 
[4]. The individual contributions had been previously published in Numerische 
Mathematik and were characterized by painstaking attention to detail, extensive 
testing, and complete documentation of both the algorithms and their imple- 
mentations. Although the programming language ALGOL never caught on in 
the United States,' the Handbook had an enormous influence on the later devel- 
opment of mathematical software. For my generation it was the place to turn to 


